

ECHNICAL Technical Q & A

Trusses with Exposed Bottom Chords

by Larry Wainright

Getting to the bottom of exposed bottom chords.

he technical department of WTCA gets a lot of questions from builders and building designers regarding truss applications. Often the questions relate to metal plate connected wood trusses used in high humidity or corrosive environments such as over swimming pools or salt storage facilities. But other times, the question simply concerns the exposure of wood to "normal" conditions of an outdoor environment.

Question

We are designing a park pavilion to be located in Juneau, AK and would like to use metal plate connected wood trusses. The truss top chords will be covered with sheathing and shingles, but the bottom chords will be exposed. Does the building code prohibit the use of exposed truss bottom chords? A local building official is citing the 2006 *International Building Code (IBC)* Section 2304.11.

Answer

There is no reference in the *IBC* that prohibits the use of exposed truss bottom chords. As an industry, we have no reason to believe that this practice is unsafe. In fact, many park pavilions and apartment complex carports throughout the country use trusses with bottom chords that are exposed to the outdoor environment.

NATURALLY DURABLE WOOD. The heartwood of the following species with the exception that an occasional piece with corner sapwood is permitted if 90 percent or more of the width of each side on which it occurs is heartwood.

Decay resistant. Redwood, cedar, black locust and black walnut. **Termite resistant.** Redwood and Eastern red cedar.

PRESERVATIVE-TREATED WOOD. Wood (including plywood) pressure treated with preservatives in accordance with Section 2303.1.8.

Figure 1. Definitions in IBC Section 2302.

IBC Section 2304.11 as cited by the building official is not applicable in this scenario. This portion of the code specifically refers to instances where either preservative-treated or "naturally durable wood" (as defined in Figure 1) is required due to their proximity to concrete, the ground, direct exposure to the elements, or other situations; none of which apply to this circumstance.

In addition, *IBC* Section 2303.1.4 states the following about wood structural panels (plywood and OSB):

... wood structural panels when permanently exposed in outdoor applications shall be of exterior type, except that wood structural panel roof sheathing exposed to the outdoors on the underside is permitted to be interior type bonded with exterior glue, Exposure 1.

If interior grade OSB is allowed on the underside of a roof, it is unreasonable to think that there would be a more stringent requirement for exposed trusses.

Furthermore, in this application, the truss lumber would not exceed the maximum allowable 19 percent moisture content (Equilibrium Moisture Content or EMC) that is assumed in the design. Table 1, from the USDA Forest Products Laboratory's *Wood Handbook*, provides the average equilibrium moisture contents of wood exposed to the outdoor atmosphere. Although Juneau comes pretty close, note that none of the cities shown have an EMC anywhere near 19 percent.

If there is still opposition by the building official to allow the use of metal plate connected wood trusses in this application, you may redesign the trusses with the wet lumber factor. While the truss lumber in your case will not be considered "wet use" according to the *National Design Specification for Wood Construction (NDS®)*

(because the lumber will not exceed 19 percent), conservative design using this factor may be enough to satisfy the building official. *NDS* Section 4.1.4 states the following:

...For lumber under conditions where moisture content of wood in service will exceed 19% for an extended period of time, the design values shall be multiplied by the wet service factor...

As far as the metal connector plates, if the gable truss is sheathed, the plates are not permanently exposed to moisture either. In fact, in an open structure like you are designing, the truss lumber and plates could be described as "well ventilated."

Trusses under the foregoing circumstances should perform as expected by the building design as long as all the building design conditions remain the same. SBC

To pose a question for this column, call the WTCA technical department at 608/274-4849 or email technicalga@sbcmag.info.

For reader service, go to www.sbcmag.info/anuprospect.htm

Tim Kaasa - tkaasa@panplus.com • www.panplus.com • Toll Free 866.726.7587

For reader service, go to www.sbcmag.info/panelsplus.htm.

State	City	Equilibrium moisture content ^a (%)											
		Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	De
AK	Juneau	16.5	16.0	15.1	13.9	13.6	13.9	15.1	16.5	18.1	18.0	17.7	18
AL	Mobile	13.8	13.1	13.3	13.3	13.4	13.3	14.2	14.4	13.9	13.0	13.7	14
AZ	Flagstaff	11.8	11.4	10.8	9.3	8.8	7.5	9.7	11.1	10.3	10.1	10.8	11
AZ	Phoenix	9.4	8.4	7.9	6.1	5.1	4.6	6.2	6.9	6.9	7.0	8.2	9
AR	Little Rock	13.8	13.2	12.8	13.1	13.7	13.1	13.3	13.5	13.9	13.1	13.5	13
CA	Fresno	16.4	14.1	12.6	10.6	9.1	8.2	7.8	8.4	9.2	10.3	13.4	16
CA	Los Angeles	12.2	13.0	13.8	13.8	14.4	14.8	15.0	15.1	14.5	13.8	12.4	12
CO	Denver	10.7	10.5	10.2	9.6	10.2	9.6	9.4	9.6	9.5	9.5	11.0	11
DC	Washington	11.8	11.5	11.3	11.1	11.6	11.7	11.7	12.3	12.6	12.5	12.2	12
FL	Miami	13.5	13.1	12.8	12.3	12.7	14.0	13.7	14.1	14.5	13.5	13.9	13
GA	Atlanta	13.3	12.3	12.0	11.8	12.5	13.0	13.8	14.2	13.9	13.0	12.9	13
HI	Honolulu	13.3	12.8	11.9	11.3	10.8	10.6	10.6	10.7	10.8	11.3	12.1	12
ID	Boise	15.2	13.5	11.1	10.0	9.7	9.0	7.3	7.3	8.4	10.0	13.3	15
IL	Chicago	14.2	13.7	13.4	12.5	12.2	12.4	12.8	13.3	13.3	12.9	14.0	14
IN	Indianapolis	15.1	14.6	13.8	12.8	13.0	12.8	13.9	14.5	14.2	13.7	14.8	15
IA	Des Moines	14.0	13.9	13.3	12.6	12.4	12.6	13.1	13.4	13.7	12.7	13.9	14
KS	Wichita	13.8	13.4	12.4	12.4	13.2	12.5	11.5	11.8	12.6	12.4	13.2	13
ΚY	Louisville	13.7	13.3	12.6	12.0	12.8	13.0	13.3	13.7	14.1	13.3	13.5	13
LA	New Orleans	14.9	14.3	14.0	14.2	14.1	14.6	15.2	15.3	14.8	14.0	14.2	15
ME	Portland	13.1	12.7	12.7	12.1	12.6	13.0	13.0	13.4	13.9	13.8	14.0	13
MA	Boston	11.8	11.6	11.9	11.7	12.2	12.1	11.9	12.5	13.1	12.8	12.6	12
MI	Detroit	14.7	14.1	13.5	12.6	12.3	12.3	12.6	13.3	13.7	13.5	14.4	15
MN	Minneapolis-St.Paul	13.7	13.6	13.3	12.0	11.9	12.3	12.5	13.2	13.8	13.3	14.3	14
MS	Jackson	15.1	14.4	13.7	13.8	14.1	13.9	14.6	14.6	14.6	14.1	14.3	14
MO	St. Louis	14.5	14.1	13.2	12.4	12.8	12.6	12.9	13.3	13.7	13.1	14.0	14
MT	Missoula	16.7	15.1	12.8	11.4	11.6	11.7	10.1	9.8	11.3	12.9	16.2	17
NE	Omaha	14.0	13.8	13.0	12.1	12.6	12.9	13.3	13.8	14.0	13.0	13.9	14
NV	Las Vegas	8.5	7.7	7.0	5.5	5.0	4.0	4.5	5.2	5.3	5.9	7.2	8
NV	Reno	12.3	10.7	9.7	8.8	8.8	8.2	7.7	7.9	8.4	9.4	10.9	12
NM	Albuquerque	10.4	9.3	8.0	6.9	6.8	6.4	8.0	8.9	8.7	8.6	9.6	10
NY	New York	12.2	11.9	11.5	11.0	11.5	11.8	11.8	12.4	12.6	12.3	12.5	12
NC	Raleigh	12.8	12.1	12.2	11.7	13.1	13.4	13.8	14.5	14.5	13.7	12.9	12
ND	Fargo	14.2	14.6	15.2	12.9	11.9	12.9	13.2	13.2	13.7	13.5	15.2	15
ОН	Cleveland	14.6	14.2	13.7	12.6	12.7	12.7	12.8	13.7	13.8	13.3	13.8	14
OK	Oklahoma City	13.2	12.9	12.2	12.1	13.4	13.1	11.7	11.8	12.9	12.3	12.8	13
OR	Pendleton	15.8	14.0	11.6	10.6	9.9	9.1	7.4	7.7	8.8	11.0	14.6	16
OR	Portland	16.5	15.3	14.2	13.5	13.1	12.4	11.7	11.9	12.6	15.0	16.8	17
PA	Philadelphia	12.6	11.9	11.7	11.2	11.8	11.9	12.1	12.4	13.0	13.0	12.7	12
SC	Charleston	13.3	12.6	12.5	12.4	12.8	13.5	14.1	14.6	14.5	13.7	13.2	13
SD	Sioux Falls	14.2	14.6	14.2	12.9	12.6	12.8	12.6	13.3	13.6	13.0	14.6	15
TN	Memphis	13.8	13.1	12.4	12.2	12.7	12.8	13.0	13.1	13.2	12.5	12.9	13
TX	Dallas-Ft.Worth	13.6	13.1	12.9	13.2	13.9	13.0	11.6	11.7	12.9	12.8	13.1	13
TX	El Paso	9.6	8.2	7.0	5.8	6.1	6.3	8.3	9.1	9.3	8.8	9.0	ç
UT	Salt Lake City	14.6	13.2	11.1	10.0	9.4	8.2	7.1	7.4	8.5	10.3	12.8	14
VA	Richmond	13.2	12.5	12.0	11.3	12.1	12.4	13.0	13.7	13.8	13.5	12.8	13
WA	Seattle-Tacoma	15.6	14.6	15.4	13.7	13.0	12.7	12.2	12.5	13.5	15.3	16.3	16
WI	Madison	14.5	14.3	14.1	12.8	12.5	12.8	13.4	14.4	14.9	14.1	15.2	15
WV	Charleston	13.7	13.0	12.1	11.4	12.5	13.3	14.1	14.3	14.0	13.6	13.0	13
WY	Cheyenne	10.2	10.4	10.7	10.4	10.8	10.5	9.9	9.9	9.7	9.7	10.6	10

[®]EMC values were determined from the average of 30 or more years of relative humidity and temperature data available from the National Climatic Data Center of the National Oceanic and Atmospheric Administration.

Table 1. Equilibrium moisture content of wood, exposed to outdoor atmosphere, in several U.S. locations in 1997

at a glance

- ☐ The *IBC* does not prohibit the use of exposed truss bottom chords.
- ☐ Since interior grade OSB is allowed on the underside of an exposed truss, it follows that there would not be a more stringent requirement for exposed trusses.
- □ The USDA Forest Products Laboratory's Wood Handbook provides the average equilibrium moisture content of wood exposed to the outdoor atmosphere for various cities in the United States.

10 August 2008 Structural Building Components Magazine www.sbcmag.info August 2008 Structural Building Components Magazine www.sbcmag.info

www.sbcmag.info

Dear Reader:

Copyright © 2008 by Truss Publications, Inc. All rights reserved. For permission to reprint materials-from *SBC Magazine*, call 608/310-6706 or email editor@sbcmag.info.

The mission of *Structural Building Components Magazine (SBC)* is to increase the knowledge of and to promote the common interests of those engaged in manufacturing and distributing of structural building components to ensure growth and continuity, and to be the information conduit by staying abreast of leading-edge issues. SBC will take a leadership role on behalf of the component industry in disseminating technical and marketplace information, and will maintain advisory committees consisting of the most knowledgeable professionals in the industry. The opinions expressed in SBC are those of the authors and those quoted solely, and are not necessarily the opinions of any affiliated association (WTCA).

