Loads

Question: 

The Gypsum Association “Fire Resistance Design Manual” (GA-600-12) lists file RC2601 with two layers of 5/8 in. gypsum wallboard (GWB) on wood joists.

Question: 

We are currently developing a project which specifies “Seismic Design Category C.” We are an East Coast truss manufacturer and have not encountered seismic requirements before.

Question: 

The Corps' guide spec for wood construction requires the drawings to indicate the design forces on each truss member for the worst loading condition. Loading conditions, of course, can include wind, snow build up, and unbalanced loading, to name a few. Many A/E firms submit drawings lacking these member forces, but instead show typical loading conditions. What does the wood truss fabricator want to see – truss diagrams with maximum loads on each member? Or would he prefer to design the truss from many required loading diagrams?

Question: 

I am a structural engineer designing pool cage structures that are typically attached to the house at the fascia board. Sometimes, the structure is attached where trusses are behind the fascia board and other times there is a framed gable end overhang. Do you know of any information concerning this additional load on the trusses or overhang under design wind loads? Is there a limiting distance on the amount of overhang? I know trusses are designed for certain uplift and the pool cage will add to this uplift at design load, but what about the gable end overhangs?

Question: 

Does SBCA have a state by state map for ground snow loads per the building code?

Question: 

What are the requirements for installing “valley set” overlay roof trusses? I am interested in nailing and support conditions. Some engineers ask for the bottom chord of the valley truss to be ripped to match the roof pitch of the underlying trusses. Is this necessary?

Question: 

What is the recommended standard spacing for open-web wood joists? I have seen them placed 24 in. O.C. Is this acceptable for a customer who will have an exercise room with 500 pounds of free weights? I understand there are problems with bouncy floors with 24 in. spacing. Is this true?

Question: 

In a small scale multi-family residential project, I'd like to use a wood truss floor-ceiling assembly to achieve a one hour separation between units. I'd like to directly attach the drywall to the underside of the trusses & use the truss space for ducts & lighting (the floor above will be lightweight concrete on plywood sub-floor). UL assemblies do not seem to address the duct/light penetrations in such an assembly. Can I achieve a one-hour rating in such an assembly and how are penetrations addressed? Can the ducts in the truss space serve both units above and below?

Question: 

As an engineer, I have noticed truss designers in some high wind states routinely using “Main Wind-Force Resisting Systems” wind pressure coefficients as opposed to “Components and Cladding” coefficients to design for wind uplift. A roof truss is not a main wind-force resisting system and would have to have a tributary area of more than 1000 sq. ft. before qualifying for the lower Primary Frame coefficients. In my experience this practice is routine.

Question: 

Can I safely install 3/4 in. T&G, OSB on 2x4 trusses that are 24 in. O.C.? My roof was installed over 5/8 in. plywood without clips that have caused a lot of sagging and the shingles need replacing. I want to “fix” it one time and install architecture type shingles, but the garage is 24 ft. wide and 28 ft. long without any load bearing walls. My concern is the weight on the trusses. 5/8 in. plywood weighs 52 lbs. and the OSB weighs 78 lbs. for each 4 ft. x 8 ft. sheet. The roof will require about 84 4 ft. x 8 ft. sheets to cover, which equals about 2,184 lbs.